Debian with Raspberry Pi Desktop on HP Mini (110-1134CL) and Dell Latitude X1

I went hunting for a lightweight Linux distribution for old computers. With a CPU running at about 1 GHz and 1GB of RAM, the HP Mini (110-1134CL) I had on hand was the approximate league of a modern Raspberry Pi. I wished for something like Debian-based Raspbian and was delighted to find that the Raspberry Pi foundation does release a Debian distribution for x86 that is a counterpart to Raspbian. This meant much of my knowledge about working with Raspbian on a Raspberry Pi could be applied.

Obviously all the work specific to Pi hardware are absent, such as video playback hardware acceleration and the GPIO pins. Still, I think I’m in better shape here than in many other lightweight Linux distributions, because I believe the Debian roots meant I can draw from the extensive library of drivers.

Installing on the HP Mini (110-1134CL) the installer reminded me of this fact by informing me I would need ucode15.fw. I thought I would have to install it manually but by the time installation completed and I got to Raspberry Pi desktop, WiFi was working. I guess installation was taken care of for me! A huge plus in favor of beginner friendliness of this distribution.

Generally speaking, it worked well on this HP Mini, feeling more responsive than Ubuntu Mate on the same machine. It is still no speed demon, but at least it is no longer an exercise in frustration. My general impression of user experience is on par with a Raspberry Pi 3 but with the notable exception of video playback: lacking the specially tailored hardware accelerated video engine, it can only consistently play YouTube videos at 480p. Trying to run 720p (most closely matching the screen resolution) dropped a lot of frames. This is a downside as so many instructional videos are online now, but 480p should still be enough to get the point across.

Encouraged by this result, I prepared to install on my Dell Latitude X1. Before I erased Ubuntu Mate, though, I wanted to get some objective numbers. I measured Ubuntu Mate boot on the Latitude X1, and the time from power button to desktop ready for user interaction was 2 minutes 37 seconds.

Installing on the Latitude X1 encountered similar driver issues, this time with ipw2200-bss.fw. Again, after informing me, the installer took care of installing it and setting it up without requiring any action from me. And once it was up and running I measured it took only 1 minute 26 seconds. This operating system is ready for user input in almost half the time of Ubuntu Mate.

Repeating the measurement, I found that the younger HP Mini had the performance edge, taking just 58 seconds to go from power button to desktop ready. Both of these numbers are impressive considering both are running mechanical hard drives and not modern flash storage.

With these impressive results, Debian with Raspberry Pi desktop has now become my go-to operating system for computers with old 32-bit Intel CPUs.

Debian with Raspberry Pi Desktop Promising For Old Computers

During my first pass evaluation of a HP Mini (110-1134CL) I tried a few modern graphical operating system options and failed to find anything satisfactory. Ubuntu Mate is designed to be a lighter weight alternative to mainline Ubuntu, but it still felt sluggish. Chrome OS (available as Neverware CloudReady) now only supports 64-bit CPUs, which excluded old 32-bit machines.

It works fine as a text-only command line machine, but that seems like a shame as it has a perfectly operable screen and video subsystem. All it needs is a Linux distribution even lighter weight than Ubuntu Mate. I’m sure there are many options out there — historically there has never been a shortage of options for Linux distributions, and websites like this one help sort through options.

But I’d rather not learn yet another Linux distribution. I’m already juggling through more than I strictly wanted, plus some time in FreeBSD as part of my FreeNAS explorations. If only there was a Linux variant that I’m already familiar with, optimized for minimalist low end hardware.

The poster child for minimalist low end hardware is the Raspberry Pi, which is so minimalist it doesn’t even have a power switch. Raspbian, their Debian-derived Linux distribution, has been cut down so it runs on Pi hardware less powerful than the cell phones we’re carrying around nowadays. What if someone took that work and put it in a distribution I can run on old x86 computers? At 1GB of RAM and 1GHz CPU, the hardware spec of a HP Mini is quite similar to a Raspberry Pi.

An online search quickly found that such a thing exists. Not only had “someone” done the work, that “someone” is Raspberry Pi foundation itself. This was the result of someone at the foundation thinking of the exact same “What if….?”question, but they thought of it a few years earlier and had the resources to make it happen.

Thus old computers with 32-bit Intel CPU have the option of running what they’re currently calling Debian with Raspberry Pi Desktop. A beginner-friendly super lightweight variant of Debian with almost all of the software packages that come pre-installed on Raspbian. Only Wolfram Mathematica and Minecraft are missing due to licensing. It all sounds very promising. Time to try it on some old 32-bit machines and see how they run.

Aborted Ubuntu Core Web Kiosk Adventure with HP Mini (110-1134CL)

I haven’t figured out how to get WiFi working on this HP Mini (110-1134CL) under Ubuntu Core 18, but that’s not the main objective of my current investigation so I’m moving on with wired Ethernet. What I wanted to do was to build an Ubuntu Core powered web kiosk appliance to show the ESA Live ISS Tracker web page. I thought this would be a pretty easy exercise, all I had to do is follow the steps I did earlier to build an kiosk appliance running on a Dell Inspiron 11 3180.

Nope! The tutorial I followed earlier is gone, its URL https://tutorials.ubuntu.com/tutorial/ubuntu-web-kiosk now forwards to https://ubuntu.com/tutorials/electron-kiosk which is a tutorial to build an ElectronJS application into a snap. I don’t have the ESA ISS Tracker in an ElectronJS app (yet) so I poked around trying to figure out what happened to the tutorial.

Both the earlier Chromium tutorial and the current Electron tutorial are built on top of the Mir Kiosk shell. I found a good collection of information on this page proclaiming itself “Configuring Mir Kiosk, a Masterclass.” That thread did mention the chromium-mir-kiosk snap used in the now-gone tutorial, but that no longer seems to run. I only get a blank screen instead of the earlier basic web kiosk.

Apparently that snap was always intended to be a short term tech demo and there was no effort to maintain it to keep it updated with latest versions of systems. This thread claimed replacement is wpe-webkit-mir-kiosk, but there’s a problem for my situation: there’s no 32-bit (i386) snap that would run on this old HP Mini’s CPU. They only had pre-built binaries for 64-bit (amd64) processors

It appears if I want to put the ESA ISS Tracker on this HP Mini as an Ubuntu Core appliance, I will need to learn how to build it into an ElectronJS application and compile a binary that would run on i386 architecture. I’m not sure how much work that will be yet, but if I put it up on Snap store I’m sure there are people who would appreciate it.

Which occurred to me… what if it is up there already? I had forgotten to check the easy thing first. I searched on the store and unfortunately didn’t see anyone who has done the work I specifically had in mind. I did find a snap termtrack that tracks ISS as well as other satellites, but there were two problems: First, it is a terminal (text mode) application so isn’t as graphically interesting. And second, it doesn’t have an i386 binary available, either. Darn.

$ snap install termtrack
error: snap "termtrack" is not available on stable for this architecture (i386) but exists on other architectures (amd64).

Oh well, so much for a low effort ESA HTML ISS tracker built on Ubuntu Core. Which reminded me to look at how it works on my other Ubuntu Core kiosk failure: the Dell Latitude X1.

Ubuntu Core WiFi Woes on HP Mini (110-1134CL)

Last time I played with Ubuntu Core, I followed through their tutorial for building a simple minimalist web kiosk whose state is wiped clean upon every reboot. At the time I had no idea why I would ever want to build such a thing, but now I have my answer: build an “appliance” for displaying ESA’s HTML Live International Space Station Tracker.

I had put Ubuntu Server and Ubuntu Core on this HP Mini (110-1134CL) earlier for a quick look to verify it works well for command line based usage. One thing I didn’t notice earlier was the fact Ubuntu Core only recognized the wired Ethernet port and not the WiFi hardware. It’s nice to have WiFi if I’m want to set up an ISS display away from my wired networking infrastructure.

I saw some red text flash by quickly upon boot. I had to retrieve the message after startup with the journalctl command to see what it complained about.

b43-phy0: Broadcom 4312 WLAN found (core revision 15)
b43-phy0: Found PHY: Analog 6, Type 5 (LP), Revision 1
b43-phy0: Found Radio: Manuf 0x17F, ID 0x2062, Revision 2, Version 0
b43 ssb0:0: Direct firmware load for b43/ucode15.fw failed with error -2
b43 ssb0:0: Direct firmware load for b43/ucode15.fw failed with error -2
b43 ssb0:0: Direct firmware load for b43-open/ucode15.fw failed with error -2
b43 ssb0:0: Direct firmware load for b43-open/ucode15.fw failed with error -2
b43-phy0 ERROR: Firmware file "b43/ucode15.fw" not found
b43-phy0 ERROR: Firmware file "b43-open/ucode15.fw" not found
b43-phy0 ERROR: You must go to http://wireless.kernel.org/en/users/Drivers/b43#devicefirmware and download the correct firmware for this driver version. Please carefully read all instructions on this website.

I like error messages that point me to instructions telling me what to do. Unfortunately http://wireless.kernel.org/en/users/Drivers/b43#devicefirmware is no longer a valid URL and returns a HTTP 404 error. Searching the web for combinations of “Broadcom WiFi b43 Linux driver” led me to this forum post by someone asking for help. A helpful response pointed to this Debian support page, and from there to Linux kernel information. Apparently there is a licensing issue, requiring extra steps to install these driver packages. Those extra steps are where I got stuck with Ubuntu Core as it only accepts software modules in the form of snaps.

First we need to identify the exact hardware to see if it is in the b43 or b43legacy package. The command is lspci -nn -d 14e4: but lspci is not part of Ubuntu Core. Flailing, I tried to snap find lspci and came up empty.

If I had been able to determine which hardware I had, I could look it up on this chart which determines if I should sudo apt install firmware-b43-installer or its legacy counterpart sudo apt install firmware-b43legacy-installer. But again Ubuntu Core does not allow installation of software via apt, only via snap.

For the moment I’m stuck on getting WiFi for Ubuntu Core on this HP Mini, but that is not the biggest obstacle: my showstopper is that the tutorial kiosk has gone away.

ESA ISS Tracker on HP Mini (110-1134CL)

I thought it might be fun to turn an obsolete computer into an International Space Station tracking monitor running full time somewhere in the house. I didn’t want to write the software myself from scratch, and a search for something that I could put on various hardware found a web-based HTML live ISS tracker published by the European Space Agency.

My first test platform is a HP Mini (110-1134CL) from my NUCC trio of machines looking for projects. As the least capable machine in the bunch, I thought it was the best candidate. I reinstalled Ubuntu Mate 18.04 on this machine for the first round of experimentation. Earlier I established Ubuntu Mate was unusable slow on this machine for interactive usage, but maybe it will be enough for passive ISS tracking display.

With Ubuntu Mate installed, putting the site on screen was straightforward. Firefox (which comes installed as part of standard Ubuntu) can be launched with a full screen --kiosk option. That command line is what I used for a systemd service, similar to how Google prescribed launching AIY Voice apps on startup. I had to modify the AIY executable with the Firefox command line, and that was enough for the ISS tracker to be automatically launched on boot. I still had to manually click the full screen button for now, one of the to-do items I might investigate fixing later.

I was not sure if a modern web application might be too much for this old piece of hardware to handle, but once up and running the ISS tracker is pretty lightweight on processor demands according to htop. To double check, I researched how to retrieve a laptop’s power consumption under Linux and found this page listing several options. I chose upower to tell me how much power the laptop believes it is drawing from its battery pack.

 

UPower says HP Mini 110 only needs 7.5 watts

Looks like running ISS tracker takes about seven and a half watts. That’s not bad, on par with a digital picture frame. Using this to calculate the cost of energy consumption: (7.5 Watts) * (24 hours) * (30 days) = 5.4 kilowatt-hours per month. I’m being billed roughly $0.25 per kilowatt-hour on my electrical bill, so running this laptop as ISS tracker 24×7 would cost me about $1.35 a month in electric power.

I’m willing to entertain that amount as-is, but I was curious if I could drop that even further. What if I could replace Ubuntu Mate with an even simpler operating system? Would that further drop power consumption? I played with the web kiosk demo for Ubuntu Core before, so I thought I’d revisit the experiment with this HP Mini 110-1134CL.

A Tale of Three Laptops

This is a summary of my research project enabled by the National Upcycling Computing Collective (NUCC). Who allowed me to examine three retired laptop computers of unknown condition, evaluating them as potential robot brain for running Robot Operating System (ROS).

For all three machines, I found a way to charge their flat batteries and get them up and running to evaluate their condition. I also took them apart to understand how I might mechanically integrate them into a robot chassis. Each of them got a short first-pass evaluation report, and all three are likely to feature in future projects both robotic and otherwise.

In the order they were examined, the machines were:

  1. HP Split X2 (13-r010dx): This was a tablet/laptop convertible designed for running Windows 8, an operating system that was also designed for such a dual-use life. Out of the three machines, this one had the longest feature list including the most modern and powerful Intel Core i3 CPU. But as a tradeoff, it was also the bulkiest of the bunch. Thus while the machine will have no problem running ROS, the mechanical integration will be a challenge. Its first pass evaluation report is here. For full details query tag of 13-r010dx for all posts relating to this machine, including future projects.
  2. Toshiba Chromebook 2 (CB35-B3340): This machine was roughly the same age as the HP, but as a Chromebook it had a far less ambitious feature list but that also gave it a correspondingly lighter and slimmer profile. It is possible to run a form of Ubuntu (and therefore ROS) inside a Chromebook, but there are various limitations of doing so. Its suitability as a robot brain is still unknown. In the meantime, the first pass evaluation report is here, and all related posts (past and future) tagged with CB35-B3340.
  3. HP Mini (110-1134CL): This was a ~10 year old netbook, making it the oldest and least capable machine of the bunch. A netbook was a simple modest machine when new, and the age meant this hardware lacks enough processing power to handle modern software. While technically capable of running ROS Kinetic, the low power processor could only run the simplest of robots and unable to take advantage of the more powerful aspects of ROS. The first pass evaluation report is here, and all related posts tagged with 110-1134CL.

While not the focus of my research project, looking over four old laptops in rapid succession (these three from NUCC plus the refurbished Dell Latitude E6230 I bought) also gave me a perspective on preparing old laptops for computing beginners.

HP Mini (110-1134CL): First Pass Evaluation

This HP Mini netbook was the oldest of three laptops in this NUCC-sponsored research project. As a netbook, it was a very limited and basic machine even when new, and that was around ten years ago. A lot has changed in the computing world since then.

Today, its 32-bit only CPU limits robot brain applications, as only the older ROS Kinetic LTS released prebuilt 32-bit binaries. Outside of robot brain applications, any modern graphical user interface is sluggish on this machine. From Chrome OS up through Windows 10 and everything in between. When running Ubuntu Mate, it actually felt worse than a Raspberry Pi running the same operating system, which came as a surprise. Both had ~1GHz CPUs and 1GB of RAM. And even though a 10-year old Atom could outperform a modern ARM CPU, the 10-year old Intel integrated graphics processor has fallen well behind a modern ARM’s graphics core.

So it appears the best position for this machine is in running command line computing or data processing tasks that work well on old low-end Intel 32-bit chips. It would be a decent contender for the type of projects that today we would think of running on a Raspberry Pi. With the caveat of weaker graphics effects, it offers the following advantages over a Raspberry Pi:

  • Intel x86 (32-bit) instruction set.
  • Higher resolution screen than the standard Raspberry Pi touchscreen.
  • Keyboard (minus the N key in this particular example)
  • Touchpad
  • Battery for portable use
  • Actual data storage device in the form of a SATA drive, not a microSD card.

It is also the only one of the three NUCC machines to have a hard wire Ethernet port. As someone who’s been burned by wireless communication issues more than once, this is a pretty significant advantage over the rest of the machines in my book.

 

HP Mini (110-1134CL): Command Line Adept

So far I’ve determined a ~10 year old netbooks lack the computing power for a modern desktop graphical user interface, even those considered lightweight by today’s standards. Was it always sluggish even in its prime? It’s a little hard to tell from here, because even though computers have undoubtedly gotten faster, our expectations have risen as well.

But there’s more to a computer’s capability than pushing pixels around, so we fall back to the next round of experiments with command line interface systems. And since we’ve already established that a solid state drive was not a great performance booster on this platform, I put the original spinning platter hard drive back in for the next round.

This time instead of Ubuntu Desktop, I installed Ubuntu server edition instead. This minimalist distribution lacks the user friendliness of a graphical user interface, but it also lacks the graphics processing workload of displaying one as well. As a result this machine is quite snappy and responsive. I found it quite usable, especially now that I’ve learned about virtual consoles and use the Alt key plus F1 through F6 to switch between up to six different sessions. Simple tasks like running Python scripts and running a basic server were done easily and quickly.

I started experimenting with Ubuntu 16, because Ubuntu did not release prebuilt installation binaries for 32-bit Ubuntu 18. However, once Ubuntu 16 server was and and running, I was able to rundo-release-upgrade to move up to Ubuntu 18. From minor tinkering I didn’t notice any significant difference between them.

Then I remembered I had played with an even more minimalist Ubuntu earlier, on an even older machine. Ubuntu 18 Snappy Core is available for 32-bit i386 processors, and it installed successfully on this laptop. Now I have one more incentive to learn how to build my own snaps to install on such a system. I just have to remember to that I can only connect to an Ubuntu Snap machine via SSH, and the list of valid keys associated with an account do not auto-update. I typically generate a SSH key every time I reset a machine, and I no longer have the keys to access my previous snappy core experiment. I ended up reinstalling snappy core to pick up the current set of SSH keys.

HP Mini (110-1134CL): Ubuntu Mate and Chrome OS Slow Even With SSD

After a ~10 year old netbook was upgraded with a solid state drive, we can now confirm the hard drive is not the only thing holding back performance. The following experiments indicate the old Atom CPU at the heart of this machine lacks the power to run any modern operating system graphical user interface.

First up at bat was Ubuntu Desktop 16.04 i386. It ran sluggishly when loading from this machine’s original spinning platter hard drive, and it was not significantly better when loading from the upgraded solid state drive. Watching the HDD activity light earlier, I thought this might be the case, but wanted to verify firsthand, which I have.

Next candidate was Ubuntu Mate, which has a 32-bit installer for 18.04. (Mainline Ubuntu stopped supporting 32-bit in 18.) Even though Ubuntu Mate advertised itself as a lighter-weight alternative to mainline Ubuntu, it was unfortunately still far from pleasant to use. But if needed, one reason to run Ubuntu Mate 18.04 is for the longer supported timeframe of Ubuntu 18. According to Ubuntu releases list, 18 is supported until April 2023.

I then tried an even more constrained operating system: install Chrome OS and make a faux Chromebook out of this thing. I had known Neverware CloudReady as a build of Chrome OS that anyone can install on an old laptop to turn it into a Chromebook. I had trouble making it work before on an old machine before, and wanted to try again.

I noticed the minimum recommended amount of RAM has increased as I remembered it was 1GB, now it is up to 2GB. But that was just a recommendation and I was able to load CloudReady on this netbook with just 1GB RAM. Once launched and running, CloudReady proved to be about as sluggish as Ubuntu Mate 18.

But that’s not the biggest problem:

CloudReady 32-bit EOL

CloudReady, originally advertised to help give old machines new life, has been forced to leave 32-bit CPUs behind. After seeing this notification I went online to find their announcement, as well as confirmation that Chrome OS v76 was about the right vintage for this to happen.

For interactive graphical desktop use, it really doesn’t get any more lightweight than Chrome OS and this machine still struggles. It looks like we need to fall back to a text-based server edition of operating system software.

[UPDATE: I found an even lighter weight distribution of Linux for old 32-bit x86 machines that would be familiar to users of the Raspberry Pi.]

HP Mini (110-1134CL): SSD Upgrade

Installing Ubuntu Desktop 16.04 LTS on this ~10 year old netbook resulted in a very sluggish computing experience. Since it was not a speed demon even when new ten years ago, I doubt its performance was only held back by its old school spinner platter hard drive. As a quick experiment, I’ll perform a SSD upgrade and see how much of an performance improvement it would result.

Opening the door at the bottom revealed a memory module as expected. It appears to be a DDR2 memory module with a capacity of 1 GB. Unfortunately I don’t have any DDR2 laptop memory modules to attempt a memory upgrade, so I left it alone and continued trying to open the laptop.

HP Mini 110-1134CL remove easy stuff

There are clips around the perimeter. Trying to open them up, I find resistance at the corners due to screws hidden underneath each rubber feet.

HP Mini 110-1134CL screws hiding under feet

Removing them did not help release the top and bottom halves of the machine, so there are even more fasteners I have yet to see. Looking for what I might have missed, I found three screws with a keyboard icon inside the battery compartment.

HP Mini 110-1134CL keyboard retention screws

Removing those screws allowed the keyboard to be popped open, exposing the hard drive plus additional fasteners holding the laptop together. The focus at the moment is the SSD upgrade, so I’ll hold off on further disassembly for now.

HP Mini 110-1134CL keyboard removed

The bright piece of metal had the right shape and size for a hard drive cage, and it was also conveniently labeled with an instructional diagram. I thought that was great — it’s going to be as easy as 1, 2, 3! Except it wasn’t. For reasons I don’t understand, they neglected to mention two more screws that had to be removed before I could proceed with steps 2 and 3.

HP Mini 110-1134CL hard drive removal

Once removed, the stock hard drive was held to this cage with four standard mounting screws. From there it was straightforward to install a 2.5″ SATA SSD for further adventures in netbook computing.

HP Mini (110-1134CL): Slow At Ubuntu 16 Desktop

A quick hardware orientation tour of this retired netbook found that we should be able to run ROS Kinetic Kame on this computer. Getting a simple ROS Kinetic environment running would be a baseline test to see how it might perform as a robot brain. And for that, we’ll have to erase the Windows 7 Starter Edition on this hard drive with Ubuntu 16.04 “Xenial Xerus”.

A sticker at the bottom of the machine identified the default operating system as Windows 7 Starter Edition. Since this machine predated Windows 8 mechanism for embedded licenses, we know this hardware would not have an embedded license for Windows and erasing this drive would mean the loss of a Windows license. I decided a Starter Edition license was no great loss and proceeded to install Ubuntu Desktop 16.04 LTS, i386 (32-bit CPU) edition.

Installation was successful on this netbook, but it was annoyingly slow to use. Every action required a few seconds, starting from activating the logon screen to every single interaction after that. I don’t know if running Windows 7 Starter Edition was any more responsive on this computer, but I wouldn’t have wanted to run an end-of-life OS even if it was faster.

What was the bottleneck here? Was it the CPU? Was it the RAM? Was it the hard drive? Or perhaps a combination of the above, like a lack of RAM triggering virtual memory activity that is hampered by a slow hard drive? For diagnosis I appreciated the fact this little netbook had a hard drive activity light, a feature that has been dropped from most modern machine. Judging by the lack of activity on that light, I suspect the problem is a slow CPU and upgrading the drive to a SSD would have limited benefit.

Even with this pessimistic view, I wanted to give it a try. I had a spare SATA SSD already on hand so it shouldn’t take a lot of time to test.

HP Mini (110-1134CL): Hardware Specifications

After a quick check to make sure this machine comes to life after charging, I started researching its hardware specifications. A sticker below the machine identified itself as a HP Mini 110-1134CL.

Based on reviews online for the HP Mini 110 product line, this is roughly ten years old powered by an Atom N270 processor. This is a big strike against using this computer as a robot brain running ROS, as the N270 is limited to 32-bit software. The latest longer-term support distribution of ROS “Melodic Morenia” only officially supports 64-bit Intel/AMD chips. If this machine is to run ROS, it would be limited to the previous LTS of ROS “Kinetic Kame” which is not ideal, but at least it will be supported until April 2021.

According to BIOS readout, there is 1GB of RAM installed on this computer. An access door with a memory module icon is visible on the underside of the machine, so a RAM upgrade is probably possible. But I don’t have any old memory modules on hand and I’m not inclined to spend money upgrading a ten year old computer. A single gigabyte is expected to be very limiting, but it is possible to get a very basic ROS installation running on a Raspberry Pi 3, which also only has 1GB. It might get annoying but is probably not going to be a deal breaker.

The BIOS hardware list also describes the hard drive as an old school spinning platter type, which was as expected. Thankfully the Fujitsu MJA2160BH G2. A 2.5″ 160GB 5400 RPM is at least a standard SATA drive and not the compact variant that stumped me earlier. This means I have the option to try upgrading it with one of the SATA SSD drive I already have on hand.

Now that I’m oriented, it’s time to take on the first experiment: see if it can run Ubuntu 16, the basis for ROS Kinetic Kame.

HP Mini (110-1134CL): Relic of the Netbook Era

After I had completed my first pass at the Toshiba Chromebook 2, I moved on to the third and final machine in this research project made possible by NUCC: the HP Mini 110-1134CL. It is an example from “netbook” era, a category of computers launched by the Asus Eee PC. Netbooks were an early attempt to build minimalist computers for basic internet activity, years before Chromebooks defined their own product category.

Like Chromebooks, the first netbooks ran a custom operating system that offered a web browser and very few other basic applications. But unlike Chromebooks, netbooks quickly abandoned custom OS and started running a special “Starter Edition” of Windows. Was it due to customer demand? Manufacturer preference? Microsoft offering carrot and stick? I have nothing useful to contribute here.

Like the other two machines, when I received this machine the battery was flat. Nothing happened when I first pushed the power switch. Fortunately it could be charged with the “type I” tip for my Targus universal laptop AC power adapter, same as the Toshiba Chromebook 2 I looked at earlier.

While it was charging I looked over its physical condition. There is a missing “N” key on the keyboard, but nothing else was outwardly wrong. Once the battery was charged, I turned it on to take a quick look at its condition. I saw what I recognized as the Windows 7 boot up sequence, but after some time staring at “Welcome…” I never got to the login screen. It threw up an error of “failed to start” without any error codes I could investigate, and suggested “rerun installation” which I don’t particularly care to do as we’ve long passed the end of life for Windows 7.

That’s a problem to be looked at later. For now, I’m glad the machine showed signs of life making it worthwhile to spend some time looking over its specifications.