Monoprice 30W Powered Desktop Speakers (605300)

Encouraged by my resurrected Insignia powered subwoofer, I dug up another item from my to-do list. These are Monoprice Pro Audio Series 30W Powered Portable Speakers, item #605300. (No product link as this item has long since been discontinued, though their Powered Desktop Speakers category is still alive and well.) I had bought it for use as my computer desktop speakers and they worked well for a few years before falling silent. Then they sat for many more years in the teardown/repair pile until now.

The two speakers are not symmetrical. One of them have all the equipment and the other is a simple box with drivers. The fancier box (wired up to be the right channel but shown to the left in above picture) has a volume knob and two audio jacks. One jack is an auxiliary input to temporarily replace signals coming in from rear main audio input, and the other a headphone jack we can plug in to temporarily listen to something privately. This latter jack still works: I could hear the audio signal through headphones plugged into this jack, and I can hear loudness changing as I turn the volume knob.

The asymmetry is very visible when looking at the rear of both speakers. One has the power plug and switch, plus the aforementioned main audio input. A slider switch for “Bass Boost” On/Off (I never noticed much of a difference either way) and speaker level output to drive the other speaker.

The volume knob is surrounded by a ring of plastic that glows blue when it is powered on. This light still illuminates, so I don’t think the problem is as simple as a blown fuse.

Looking inside the simpler box first, it’s hard to see very much through the small opening. The electronic bits we could see is probably an audio crossover circuit.

Moving on to the other speaker, we see a lot more and thankfully they’re more accessible as well. AC power enters the enclosure to an in-line fuse. (I didn’t think the fuse was the problem, but I checked anyway and there is indeed electrical continuity.) Power then flows to a transformer which steps ~120V AC down to ~14V AC. This stepped-down voltage connects to the circuit board, adjacent to a large four-pin package that looks like a rectifier.

Four sets of wires lead from this board into the speaker enclosure. The smallest and thinnest pair of wires go to the smaller speaker driver for higher frequencies, and the thicker pair goes to the larger driver. Two gray bundles lead to front-panel controls, one for the volume knob/power LED and the other for the auxiliary/headphone jacks.

Examining the circuit board, I see discoloration underneath these two components. Labeled Z1 and Z2 with diode symbols, I infer these are Zener diodes. Z2 was held down by a white-colored compound of unknown nature. That stuff was tenacious and refused to peel off, but I could cut it with a knife allowing me to unsolder both Z1 and Z2. Once removed I could read diode markings as IN4742A, confirming they are Zener diodes. I don’t have any replacements on hand, but I could give these two a quick basic test. With my multimeter switched to diode test mode, they read ~0.72V the one way and nothing the other. These are expected values of a diode proving they have neither failed open nor failed short. Circuit board discoloration showed that they’ve been running hot, but that fact by itself is not necessarily a problem with Zener diodes. A full diode test is beyond my abilities at the moment, so I soldered them back into the board and tested the speaker again. I had a slim hope that heat stress damaged a solder joint and resoldering them would bring the speaker back to life. No such luck, but it was easy to check.

Next, I looked into the still-functioning headphone jack. The speakers would go silent when audio is going through the headphones. Perhaps the jack is stuck in the “we have headphones” configuration. This would keep the speakers silent even when there are no headphones present. Unfortunately, the audio jacks are mounted on this circuit board, glued to the enclosure. Breaking the board free may be destructive, so I put this off to later.

Looking for promising components to investigate, I settled on the audio amplifier chip. It is a big component with large pins that I could probe, and its markings are visible for easy identification. I found and downloaded the datasheet for ST Electronics TDA7265 (25+25W Stereo Amplifier with Mute & Stand-By) and got to work understanding how it was used here.

I printed out a picture of the circuit board (*) so I could take notes as I probed the board (with the power off) while comparing it to TDA7265 datasheet information. The first order of business was looking for pins 1 and 6, which the datasheet said were both negative side of input power. I found those two pins connected to the same copper trace on the board leading to one pin of the rectifier, giving me confidence that I’m looking at the right part and I am oriented in the correct direction. I noted the pins I wanted to check once I’ve powered on the board:

  • Pins labeled R+ and R- should be DC power rectified from the ~14V AC transformer output. If there’s no voltage, I may have a dead rectifier.
  • There are two inputs, each with their positive and negative pins. I’m not sure which is wired as left and which is right, but I can connect a stereo signal to both input jacks. I should see line level voltage if audio signal makes it to the amplifier chip. If not, I can backtrack from here.
  • If audio makes it to input, I will probe Outputs 1 and 2, which should have speaker level voltage relative to a shared ground.
  • If there is input signal but no output, I will probe pin 5 which controls mute & standby behavior. See what voltages I read, and compare behavior to what datasheet says.

With this plan in hand, I prepared my tools. My LRWave web app written earlier for Lissajous experiments will provide test input signal. For probing the circuit, I have my multimeter and I have my oscilloscope. As a quick test, with the power still off I probed the audio input jacks while LRWave was running full blast. I measured ~0.6V AC on those pins (in the above photo, labeled in the lower right as “R IN, R GND, L IN, and L GND”.) This is a great start. I then turned on the power strip (powering up the speaker) and was immediately blasted by the sound of LRWave’s 440Hz sine wave.

The speaker works now! That is great, but… why does it work now? The last hardware modification I deliberately made to the device was to resolder Zener diodes Z1 and Z2. I tested the speakers then, and it didn’t make any sound. I must have made another (non-deliberate) change to the hardware to bring it back to life. Was it reaching for the audio jacks and jiggling a loose cable connection? Was it something I did by accident while probing the amplifier chip circuit? I don’t know. The speaker works again, but this success was unsatisfying. I wouldn’t call it “repaired”, either, as I can’t explain how I fixed it. It could just as easily and mysteriously break again tomorrow. But if it does, at least I have a plan to investigate for Round 2.


(*) The lone surface mount IC visible on this side is a ST TL074 quad op-amp.

Capacitor Replacement on Insignia 100W Powered Subwoofer (NS-RSW211)

My home theater had a small powered subwoofer, an Insignia NS-RSW211 Rocketboost 6-1/2″ 70W Wired/Wireless-Ready Subwoofer. After several years of use, it started exhibiting some strange effects and I disconnected it. Since I’m not a huge home theater buff and it was a modest unit to begin with, I didn’t really miss its absence. It sat forgotten in a corner until I saw Monoprice held a sale on their item #8248, a similar-sized powered subwoofer that would be a great replacement. Before I hit “Buy” on the Monoprice item, though, I thought I should make an effort to fix the one I have.

The failing symptoms indicate an intermittent connection somewhere in the system. When I turn on the subwoofer, it is fine for the first few minutes. After that initial period, sound would start cutting in and out at irregular periods. Every time it cuts out, the low bass sounds disappear. When it cuts back in, a deep “thump” announces return of low frequencies. This would start out tolerably infrequent, like hearing a distant firework show. Interruptions then become increasingly frequent. Eventually it will sound like automatic weapons fire in the background even when we’re not watching an action film, at which point I would turn it off. After a few hours of rest, I could repeat the cycle. Intermittent issues are always annoying to diagnose (part of why I’ve been putting it off) but I should at least take a look. On to the workbench it goes!

There are a lot of fasteners visible on this back plate. This is not a huge surprise: a subwoofer’s job is to push those low frequency thumps. Each thump will rattle anything not securely fastened, and every thump will be trying to loosen every fastener. In fact, the large numbers of fasteners are quite welcome: if it had been glued together, opening it up would be a destructive act making a successful repair unlikely.

But it wasn’t glued, so I could get to work. Removing the outermost eight fasteners allowed me to remove the rear module. I was a little surprised to see all electronics were sealed inside an airtight box. This might be good for acoustics but bad for air cooling circulation. The only thing poking into the acoustic chamber are the pair of speaker wires going to the driver itself. They used commodity spade connectors and were easy to disconnect so I could focus on the electronics box.

Removing the next outermost set of six fasteners allowed me to open up the electronics box. I was greeted with the thick stench of fried electronics. Something definitely died in here and, if it smelled this strong, I should be able to see it.

Yep, there it is. Capacitor C28 is toast. Finding this dead capacitor is good news, much easier than diagnosing an intermittent issue. The bad news is I’m not familiar enough with power supply theory of operation to explain why this absolutely and completely dead capacitor would cause an intermittent failure.

One end has completely blackened and appears to have broken open as well.

The yellow circuit board appears to be the power supply subsystem. 120V AC power cable (black & white wires) goes to the power switch, then into one corner of this yellow board near the dead capacitor. Diagonally opposite them is this connector delivering +24V to the rest of the subwoofer.

Unplugging AC input and DC output wires, then removing four screws, allowed removal of this power supply board so I could unsolder the dead capacitor easily. It came off in two separate pieces, very dead.

Reading markings on the charred capacitor carcass was a challenge. After playing with lighting, camera settings, and photo editing, I could make it out as:

105K
250KC

I’m not familiar with this type of capacitor and didn’t know how to interpret those numbers. Looking around online, I found this page which said “105” meant 10 * 105 pF = 1000000 pF = 1000 nF = 1 uF and the “K” meant +/- 10% tolerance. The voltage rating portion didn’t line up with anything on that page, though. I’m inferring that “250KC” means something that can handle up to at least 250V, as this device can take up to 230V AC input.

Looking around my various assortment trays of capacitors, I didn’t find anything +/- 10% of 1uF. I then looked through my pile of teardown remnants for capacitors to salvage. The closest candidate was a 0.68uF 450V capacitor from the Antec power supply that caught on fire.

It even had the same footprint as the original toasted capacitor, making for an easy fit in the available space. However, 0.68uF is still short of the capacitance of the original so I continued looking.

I found a 0.22uF 250V capacitor inside the surprisingly complex evaporator fan. There was a clear conformal coating over everything that made removal a bit of a pain (and the result looking messy.) But they gave me a theoretical 0.68uF + 0.22uF = 0.90uF and my multimeter says they’re actually a tiny bit above rated value. Bringing me within 10% of 1uF, good enough for a test run.

Since the original capacitor slot was already occupied by the 0.68uF capacitor, the second parallel capacitor had to sit on the back.

I buttoned everything back up and preliminary test looks promising. After playing through a two-hour movie, I have yet to hear the thumping “fireworks” to “gunfire” failure sequence. Still unknown: what killed the original capacitor, and whether the same will happen to these replacements. Time will tell. In the meantime, I’ve managed to keep something out of landfill and resisted the temptation to buy a Monoprice powered subwoofer on sale. I’m thankful the design & engineering team built this device in a repairable way.

Microwave Turntable Repair

My microwave is getting older and sometimes doesn’t heat food as much as expected. I kept using it after an earlier test of its heating power was inconclusive. A few days ago, a new problem cropped up: after an audible mechanical noise, the turntable stopped turning. This led to uneven heating, and I thought maybe it’s time to get a new microwave. Before I spent money, though, I wanted to take a look at the turntable motor and see if I can apply any lessons learned from my earlier teardown of a similar motor.

This microwave was a Sharp R-309YK and I was pleasantly surprised there was design effort for ease of repair. An access panel is stamped into the bottom of the microwave held by four small tabs of metal.

Using a pair of pliers, I twisted off those four small tabs and removed the panel. We see the turntable motor identified as 49TYZ-A1 by Yuyao Yahua Mechanical & Electrical Co., Ltd. I don’t know how important it is to buy the exact replacement, there are a lot of similar motors in this form factor. The only significant variation I noticed was the shape and length of the output shaft.

Before I buy a new motor, I had nothing to lose by taking a closer look at this one. I applied 110V power and nothing moved. The problem is indeed here rather than somewhere else in the microwave.

Following precedent of my previous teardown, I opened up the faceplate to look for a mechanical obstruction or anything else that would explain why the motor wouldn’t turn. I thought maybe a gear snapped a tooth, but there was nothing of the sort. I removed one gear after another until I was left with only the rotor, which did not live up to its name because it did not rotate under power.

I picked up the rotor for a closer look, and I noticed a crack running across its magnet. Tiny pieces of magnet had chipped off the edge of the crack. After clearing out the tiny chips and dropping the rotor back in, it spun up under power. I guess a lodged chip of magnet was enough to keep the rotor from starting up? But the rotor made a lot of intermittent noise while spinning. The click clack noise sounded like a tiny part catching on a physical obstruction and tapping it. But I had no luck finding the culprit. If it’s another magnet chip, I couldn’t find it. Hypothesis: centripetal force acting on the cracked magnet opened it up to a C shape and pulling a corner far enough out it is barely tapping some other part of the motor. If true, that’s not good because it will quickly produce more magnet chips and stop the motor again.

Fortunately, I had kept the rotor from my previous turntable motor teardown. I had disposed of most of the motor but kept the rotor because I wanted to visualize its magnetic field. Using my calipers, I confirmed that all major dimensions were nearly identical.

It seems to be a drop-in replacement, spinning up without the click clack noise. I reassembled the motor and reinstalled it in the microwave. A quick test confirmed that my turntable is turning again with this salvaged rotor.

All I had to do was reinstall the access panel, which was designed so that I could turn it 180 degrees and insert tabs to fit into precut slots. It just needed an appropriately sized screw that could self-tap into sheet metal. I found one in my stockpile of fasteners, and we are good to go. I didn’t need to buy a new microwave today, I didn’t even need to buy a new turntable motor. I appreciate Sharp engineers for stamping in an access panel to make this project so much easier than it would have been otherwise.

Pixel 3a Screen Replacement

I was very impressed by iFixit’s Pixel 3a Screen Replacement kit, but naturally I bought it for a reason. I have a Pixel 3a with a shattered screen I wanted to fix by following their instructions.

Well, “shattered” might be going a bit too far but it was definitely broken well beyond just “cracked”. Amazingly enough, the phone still ran in this state. As we can see here, the display works just fine. However, touch responsiveness isn’t great on account of all the cracks running throughout the screen. There are several scattered dead spots. Inconveniently, a few dead spots were where the keyboard would live which makes it a challenge to put in WiFi passwords and such. (* one workaround below)

I turned the screen off and chose a camera angle so my workbench light could highlight the damage.

Near the bottom of the screen, small bits are missing allowing us to see the phone internals within. Given this damage, I was amazed touch input still worked at all. My first order of business was to remove this impressively damaged screen. A suction cup was included in the iFixit kit to grab onto glass, but it could not get a good seal on this screen: too many cracks let in air and ruin the suction.

Backup plan: use tweezers to pick at little pieces of glass.

That was enough to open up an entry point for the Wankel rotor-shaped pick.

At certain locations, putting too much stress would damage the optically clear resin bonding the touch digitizer glass to the OLED screen. Bubbles would form, and the bonding is no longer optically clear. This would be a concern if I wanted to reuse this screen, but due to that same resin I could not.

It took me roughly half an hour of painstaking work to free the old screen from the adhesive holding it down all around the phone. Occasionally the “pain” is literal as small shards of glass stabbed into my hand. Fortunately, no blood was drawn.

Once removed and laid down as per iFixit guide, I could compare the original module with the new replacement. This is necessary because there may be small components that need transferring, and the list is not definitive because little accessories vary depending on supplier whim. In similar repairs, we frequently need to replace the speaker mesh. Fortunately my replacement module already has a mesh in place so I was spared that task. However, there’s a light gray piece of plastic surrounding the front-facing camera that I would have to transfer over.

After doing that comparison, I unplugged the old screen and plugged in the new one. I wanted to be sure the new screen will work before I roll up my sleeve for the tedious work of cleaning up.

If the new screen didn’t work, I didn’t want to waste my time on annoying tasks. Cleaning up remaining shards of glass, wipe up dirt, and my least favorite part of working with modern electronics: scraping off gummy bits of adhesive.

Once most of the adhesive was cleaned up (as much as I had patience for) I transferred this light gray piece of plastic camera surround. Then I followed the iFixit guide for applying custom-cut piece of new adhesive and installed the new screen in its home.

Left: a stack of plastic backings to protect adhesives and glass surfaces. Center: the old screen in one large and many small pieces. Right: the repaired phone with its shiny new intact screen!

I shall celebrate with a sticker from the iFixit repair kit. As much as I loved this success, I wished it didn’t have to be expensive as it was. I blame the design decision to bond touch digitizer and OLED display.


(*) One way to get an Android phone on WiFi when the touchscreen is too erratic to let us enter a WiFi password:

  1. Take another Android phone on the same WiFi network we want to get on.
  2. Tap its WiFi connection to reach “Network Details” screen.
  3. Tap “Share” to generate a QR code.
  4. Scan QR code from erratic phone.

Surface Mount Repair Practice with Mr. Robot Badge

Years ago at a past Hackaday Superconference, I had the chance to play with a small batch of “Mr. Robot Badge” that were deemed defective for one reason or another. After a long story that isn’t relevant right now, I eventually ended up with a single unit from that batch with (at least) two dark LEDs in its 18×18=324 array of LEDs. I thought trying to fix it would be a good practice exercise for working with surface-mount electronics, and set it aside for later. I unearthed it again during a recent workshop cleanup and decided it was a good time to check my current surface mount skill level.

I’m missing a few tools that I thought would be useful, like a heat plate or hot air rework station. And while my skills are better than they were when I was originally gifted with the badge, it’s still far from “skilled” at surface mount stuff. (SMD for surface-mount devices, or SMT for surface-mount technology.) One relatively new tool is a dedicated LED tester, and I used it to probe the two dark LEDs. One of them would illuminate with the test probe in place, and a dab of solder was enough to make proper electrical connection and bring it to life. The other one stayed dark even with test probe and would need to be replaced.

Looking in my pile of electronics for a suitable doner, I picked out my ESP32 dev module with a flawed voltage regulator that went up in smoke with 13V DC input (when it should have been able to handle up to 15V DC). This module has a red LED for power and a blue LED for status. I probed the red LED and found it dead, but the blue LED lit up fine. Between “keep looking for a red LED” and “use the blue one in my hand” I chose the latter out of laziness. This is a practice exercise with low odds of success anyway.

Lacking a hot air rework station or a hot plate, I didn’t have a good way to heat up both sides of a LED so there was a lot of clumsy application of solder and flux as I worked to remove the dead badge LED. It came apart in two pieces, so I practiced removal again with the dead red LED on my ESP32 dev module. Once I removed it intact, I tossed it aside and used my newfound (ha!) skill to successfully remove the blue LED in one piece. I might be getting the hang of this? Every LED removal was easier than the last, but I still think a hot air station would make this easier. After I cleaned up the badge LED pads, I was able to solder one side of the salvaged LED then the other. I could see a little bit of green on one side of the LED indicating polarity, so I lined it up to be consistent with the rest of the LEDs on the badge.

I turned on the badge and… the LED stayed dark. It then occurred to me I should have verified the polarity of the LED. Pulling out the LED tester again I confirmed I have soldered it on backwards. Valuable lesson: LED manufacturers are not consistent about how they used the little bit of green on a LED to indicate polarity. So now I get to practice LED removal once again, followed by soldering it back on the correct way. I would not have been surprised if the blue LED had failed after all this gross abuse. On the upside a failure would motivate me to go find another red LED somewhere.

Here is a closeup of the problematic area on the badge. The circle on the right was the LED that just needed a bit of solder for proper contact. The circle on the left represents the scorched disaster zone that resulted from SMT rework amateur hour as I unsoldered and resoldered multiple times. The little blue LED clung on to life through all this hardship I had inflicted and shone brightly when the badge was turned on. I’ll call that a successful practice session.

[Update: I didn’t originally intend to do anything with the badge beyond soldering practice, but I looked into trying to write my own code to run on the badge and successfully did so.]

Maytag Dryer MDG9206AWA Motor Replacement

After verifying my clothes dryer’s motor couldn’t even turn its own shaft in the absence of load, I was confident replacing the motor assembly will restore my dryer to working condition. I started looking online for this motor part number and came up empty, and soon realized this was due to an obfuscated ecosystem of appliance repair parts. There is a wide variety of part numbers, and certain ones are supposed to replace certain other parts. I’m not in favor or such an opaque system and realized I need some kind of help to navigate it.

That’s when I snapped out of my online shopping indoctrination and started searching for a local resource. After all, washers and dryers have been around (and been failing) long before the advent of online shopping, surely I could find a local vendor of appliance parts. I expect them to mostly cater to local repair experts as they do their house calls, but a subset of these vendors should also be willing to sell at retail to DIY consumers like myself. I found Coast Appliance Parts Co. with a location near me and decided to visit them first.

At the service counter, I gave my dryer model number MDG9206AWA and the store employee was able to put that into their computer system to retrieve some part numbers as replacements. Thankfully they were in stock so I bought a replacement motor assembly plus a replacement belt. Neither of which had a model number that matched the original item on my dryer, even though they were packaged in a way consistent with official replacement parts. Why appliance manufacturers use such a convoluted system I don’t know, but at least I have a way to deal with it.

Fortunately, mismatching part number aside, both the motor and the belt seem to be straightforward replacements for their original counterparts. Once I installed the motor by itself I verified it could at least spin itself in the absence of a load, confirming the old motor assembly was indeed faulty. From there I could put everything back together in the reverse order of assembly, and my dryer was back up and running!

Now I can resume doing laundry at home, and also resume my quest to salvage LED backlights from old LCD panels.

Sawppy Emergency Field Repair at Maker Faire Bay Area 2019: Steering Servo

Taking Sawppy to Maker Faire Bay Area 2019 was going to be three full days of activity, more intense than anything I’ve taken Sawppy to before. I didn’t think it was realistic to expect a completely trouble free weekend and any brea7kdowns will be far from my workshop so I tried to anticipate possible failures and packed accordingly.

Despite my worries, the first two days were uneventful. There was a minor recurring problem with set screws on shafts coming loose despite Loctite that had been applied to the threads. I had packed the appropriate hex wrench but neglected to pack Loctite. So I could tighten set screws back down, but lacking Loctite I had to do it repeatedly. Other than that, Friday was completely trouble-free, and Saturday rain required deployment of Sawppy’s raincoat. But Sawppy got tired by Sunday morning. Driving towards Dean Segovis’ talk, I noticed Sawppy’s right front corner steering angle was wrong. At first I thought it was just the set screw again but soon I realized the problem was actually that the servo would turn right but not left.

With the right-front wheel scraping along the floor at the wrong angle, I drove Sawppy to a clearing where I could begin diagnosis. (And sent call for help to Emily.) The first diagnostic step was pushing against the steering servo to see how it pushes back. During normal operation, it would fight any movement off of its commanded position. With the steering behavior I witnessed, I guessed it’ll only fight in one direction but not another. It didn’t fight in either direction, as if power was off. Turns out power was off: the fuse has blown.

I replaced the fuse, which immediately blew again. Indicating we have a short circuit in the system. At this point Emily arrived on scene and we started methodically isolating the source of the short. We unplugged all devices the drew power: router, Pi, and all servos. We inserted third fuse, powered on, and started testing.

Sawppy dead servo 29

We connected components one by one, saving the suspected right-front servo for last. Everything was fine until that suspected servo was connected, confirming that servo has failed short. Fortunately, a replacement servo is among the field repair items I had packed with me, so servo replacement commenced. When the servo was removed I noticed the steering coupler had cracked so that had to be replaced as well.

Using a spare BusLinker board and the Dell Inspiron 11 in my backpack, I assigned the serial bus ID of my replacement servo to 29 to match the failed front right steering servo. Then I pulled out a servo shaft coupler from the field repair kit and installed that on my replacement servo. We performed a simple power-on test to verify the servo worked, plugged everything else back in, and Sawppy was back up and running.